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Width of knot diagram
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Thin and thick levels
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Thin position and bridge position

Thin position: Diagram minimizing width
Bridge position: Diagram with no thin level



Thin position and bridge position

Thin position: Diagram minimizing width
Bridge position: Diagram with no thin level
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Thin position and bridge position

Thin position: Diagram minimizing width
Bridge position: Diagram with no thin level

[
) I . /J//_._ } .“J"Inz
.- | | \ / »‘"I
| e o — e
| b e )
>
Not thin position Thin position

Not bridge position Bridge position

Thin position
Bridge position



Thin position and not bridge position




Level surfaces

Embed knots in S3 = R3 U {co}.
Lower dimension: S? = R2 U {c0}.
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Embed knots in S3 = R3 U {co}.
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Essential surfaces

Essential surface: a properly embedded, orientable surface in a
3-manifold M is essential in M if

@ it is incompressible
@ it is not boundary parallel
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Compressible vs. incompressible

Compression disk: Given a surface S embedded in a
3-manifold M, a disk D embedded in M is a compression disk
of Sif

e DNnS=0D
@ 0D does not bound a disk in S



Compressible vs. incompressible

Compression disk: Given a surface S embedded in a
3-manifold M, a disk D embedded in M is a compression disk
of Sif

e DNnS=0D
@ 0D does not bound a disk in S




Incompressible level surface
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Incompressible level surface
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Incompressible, but boundary parallel, so not essential



Essential level surface




Theorem (Wu, 2006)

If a knot K in S is in thin position but not in bridge position,

then a thinnest level surface of K is an essential surface in
S8\ K.
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Discussion and Corollary

We know that W(Ki#Kz) < W(K7) + W(Kz) — 2 for all knots Kj

and Ko.
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Discussion and Corollary

We know that W(Ki#Kz) < W(K7) + W(Kz) — 2 for all knots Kj
and Ko.
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Conjecture: W(Ki#Kz) = W(Ki) + W(Kz) — 2.




Discussion and Corollary

We know that W(Ki#Kz) < W(K7) + W(Kz) — 2 for all knots Kj
and Ko.
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Conjecture: W(Ki#Kz) = W(Ki) + W(Kz) — 2.
Theorem (Rieck and Sedgwick, 2002)

The conjecture holds for small knots. (Corollary to Wu'’s
theorem.)




In 2010, Ryan Blair and Maggy Tomova found a
counterexample to the conjecture that
W(Ki#Kz) = W(Ky) + W(Kz) — 2 for all knots Ky and K.



In 2010, Ryan Blair and Maggy Tomova found a
counterexample to the conjecture that
W(Ki#Ko) = W(K7y) + W(Ky) — 2 for all knots Ky and Ko.
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