Thin Position and Essential Planar Surfaces Ying-Qing Wu

Ana Wright

June 26, 2018

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Outline

Background and definitions

- Width
- Thin and thick levels
- Thin position and bridge position

- Essential surfaces
- Results
 - Main theorem
 - Corollary and discussion

Width

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Width of knot diagram

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Width of knot diagram

Thin and thick levels

Thin position and bridge position

Thin position: Diagram minimizing width Bridge position: Diagram with no thin level

・ コット (雪) (小田) (コット 日)

Thin position and bridge position

Thin position: Diagram minimizing width Bridge position: Diagram with no thin level

・ロット (雪) (日) (日)

Thin position and bridge position

Thin position: Diagram minimizing width Bridge position: Diagram with no thin level

Not thin position Not bridge position Thin position Bridge position Thin position Bridge position

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Thin position and not bridge position

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Level surfaces

Embed knots in $S^3 = \mathbb{R}^3 \cup \{\infty\}$. Lower dimension: $S^2 = \mathbb{R}^2 \cup \{\infty\}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Level surfaces

Essential surfaces

Essential surface: a properly embedded, orientable surface in a 3-manifold M is **essential** in M if

- it is incompressible
- it is not boundary parallel

Essential surfaces

Essential surface: a properly embedded, orientable surface in a 3-manifold M is **essential** in M if

- it is incompressible
- it is not boundary parallel

Compressible vs. incompressible

Compression disk: Given a surface S embedded in a 3-manifold M, a disk D embedded in M is a compression disk of S if

- $D \cap S = \partial D$
- ∂D does not bound a disk in S

Compressible vs. incompressible

Compression disk: Given a surface S embedded in a 3-manifold M, a disk D embedded in M is a compression disk of S if

- $D \cap S = \partial D$
- ∂D does not bound a disk in S

イロト 不良 とくほ とくほう 二日

Incompressible level surface

◆□ → ◆□ → ◆三 → ◆□ → ◆○ ◆

Incompressible level surface

Incompressible, but boundary parallel, so not essential

・ロト ・聞ト ・ヨト ・ヨト

ъ

Essential level surface

▲□▶▲圖▶▲圖▶▲圖▶ ■ のへで

Main Result

Theorem (Wu, 2006)

If a knot K in S^3 is in thin position but not in bridge position, then a thinnest level surface of K is an essential surface in $S^3 \setminus K$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Main Result

Theorem (Wu, 2006)

If a knot K in S^3 is in thin position but not in bridge position, then a thinnest level surface of K is an essential surface in $S^3 \setminus K$.

Discussion and Corollary

We know that $W(K_1 \# K_2) \leq W(K_1) + W(K_2) - 2$ for all knots K_1 and K_2 .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Discussion and Corollary

We know that $W(K_1 \# K_2) \leq W(K_1) + W(K_2) - 2$ for all knots K_1 and K_2 .

Conjecture: $W(K_1 \# K_2) = W(K_1) + W(K_2) - 2$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Discussion and Corollary

We know that $W(K_1 \# K_2) \le W(K_1) + W(K_2) - 2$ for all knots K_1 and K_2 .

Conjecture: $W(K_1 \# K_2) = W(K_1) + W(K_2) - 2$.

Theorem (Rieck and Sedgwick, 2002)

The conjecture holds for small knots. (Corollary to Wu's theorem.)

In 2010, Ryan Blair and Maggy Tomova found a counterexample to the conjecture that $W(K_1 \# K_2) = W(K_1) + W(K_2) - 2$ for all knots K_1 and K_2 .

(日) (日) (日) (日) (日) (日) (日)

In 2010, Ryan Blair and Maggy Tomova found a counterexample to the conjecture that $W(K_1 \# K_2) = W(K_1) + W(K_2) - 2$ for all knots K_1 and K_2 .

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

・ロト・四ト・モート ヨー うへの

References

Ying-Qing Wu Thin Position and Essential Planar Surfaces (2006)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □