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Width
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Width of knot diagram

W (D1) = 14 W (D2) = 8 W (D3) = 8
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Thin and thick levels

Thin level Thick level
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Thin position and bridge position

Thin position: Diagram minimizing width
Bridge position: Diagram with no thin level

Not thin position Thin position Thin position
Not bridge position Bridge position Bridge position
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Thin position and not bridge position
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Level surfaces

Embed knots in S3 = R3 ∪ {∞}.
Lower dimension: S2 = R2 ∪ {∞}.

Knot diagram Level surface
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Essential surfaces

Essential surface: a properly embedded, orientable surface in a
3-manifold M is essential in M if

it is incompressible
it is not boundary parallel
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Compressible vs. incompressible

Compression disk: Given a surface S embedded in a
3-manifold M, a disk D embedded in M is a compression disk
of S if

D ∩ S = ∂D
∂D does not bound a disk in S
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Incompressible level surface

Incompressible, but boundary parallel, so not essential
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Essential level surface
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Main Result

Theorem (Wu, 2006)

If a knot K in S3 is in thin position but not in bridge position,
then a thinnest level surface of K is an essential surface in
S3 \ K .
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Discussion and Corollary

We know that W (K1#K2) ≤W (K1) +W (K2)− 2 for all knots K1
and K2.

Conjecture: W (K1#K2) = W (K1) + W (K2)− 2.

Theorem (Rieck and Sedgwick, 2002)
The conjecture holds for small knots. (Corollary to Wu’s
theorem.)
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Discussion

In 2010, Ryan Blair and Maggy Tomova found a
counterexample to the conjecture that
W (K1#K2) = W (K1) + W (K2)− 2 for all knots K1 and K2.
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